reading-notes

React 2

Conditional Rendering

Conditional rendering in React works the same way conditions work in JavaScript. Use JavaScript operators like if or the conditional operator to create elements representing the current state, and let React update the UI to match them.

function UserGreeting(props) {
  return <h1>Welcome back!</h1>;
}

function GuestGreeting(props) {
  return <h1>Please sign up.</h1>;
}

Inline If with Logical && Operator

function Mailbox(props) {
  const unreadMessages = props.unreadMessages;
  return (
    <div>
      <h1>Hello!</h1>
      {unreadMessages.length > 0 &&
        <h2>
          You have {unreadMessages.length} unread messages.
        </h2>
      }
    </div>
  );
}

const messages = ['React', 'Re: React', 'Re:Re: React'];
ReactDOM.render(
  <Mailbox unreadMessages={messages} />,
  document.getElementById('root')
);

this is going to work because in JavaScript, true && expression always evaluates to expression, and false && expression always evaluates to false.

Note that returning a falsy expression will still cause the element after && to be skipped but will return the falsy expression.

Inline If-Else with Conditional Operator

render() {
  const isLoggedIn = this.state.isLoggedIn;
  return (
    <div>
      The user is <b>{isLoggedIn ? 'currently' : 'not'}</b> logged in.
    </div>
  );
}

Preventing Component from Rendering

In the example below, the is rendered depending on the value of the prop called warn. If the value of the prop is false, then the component does not render:

function WarningBanner(props) {
  if (!props.warn) {
    return null;
  }

  return (
    <div className="warning">
      Warning!
    </div>
  );
}

class Page extends React.Component {
  constructor(props) {
    super(props);
    this.state = {showWarning: true};
    this.handleToggleClick = this.handleToggleClick.bind(this);
  }

  handleToggleClick() {
    this.setState(state => ({
      showWarning: !state.showWarning
    }));
  }

  render() {
    return (
      <div>
        <WarningBanner warn={this.state.showWarning} />
        <button onClick={this.handleToggleClick}>
          {this.state.showWarning ? 'Hide' : 'Show'}
        </button>
      </div>
    );
  }
}

ReactDOM.render(
  <Page />,
  document.getElementById('root')
);

Lists and Keys

Rendering Multiple Components

Below, we loop through the numbers array using the JavaScript map() function. We return a <li> element for each item.

const numbers = [1, 2, 3, 4, 5];
const listItems = numbers.map((number) =>
  <li>{number}</li>
);

Basic List Components

function NumberList(props) {
  const numbers = props.numbers;
  const listItems = numbers.map((number) =>
    <li>{number}</li>
  );
  return (
    <ul>{listItems}</ul>
  );
}

const numbers = [1, 2, 3, 4, 5];
ReactDOM.render(
  <NumberList numbers={numbers} />,
  document.getElementById('root')
);

When you run this code, you’ll be given a warning that a key should be provided for list items. A “key” is a special string attribute you need to include when creating lists of elements. We’ll discuss why it’s important in the next section.

Keys

Keys help React identify which items have changed, are added, or are removed. Keys should be given to the elements inside the array to give the elements a stable identity:

const numbers = [1, 2, 3, 4, 5];
const listItems = numbers.map((number) =>
  <li key={number.toString()}>
    {number}
  </li>
);

The best way to pick a key is to use a string that uniquely identifies a list item among its siblings. Example:

const todoItems = todos.map((todo) =>
  <li key={todo.id}>
    {todo.text}
  </li>
);

Extracting Components with Keys

Keys only make sense in the context of the surrounding array.

For example, if you extract a ListItem component, you should keep the key on the <ListItem /> elements in the array rather than on the <li> element in the ListItem itself.

Keys Must Only Be Unique Among Siblings

Keys used within arrays should be unique among their siblings. However, they don’t need to be globally unique. We can use the same keys when we produce two different arrays:

function Blog(props) {
  const sidebar = (
    <ul>
      {props.posts.map((post) =>
        <li key={post.id}>
          {post.title}
        </li>
      )}
    </ul>
  );
  const content = props.posts.map((post) =>
    <div key={post.id}>
      <h3>{post.title}</h3>
      <p>{post.content}</p>
    </div>
  );
  return (
    <div>
      {sidebar}
      <hr />
      {content}
    </div>
  );
}

const posts = [
  {id: 1, title: 'Hello World', content: 'Welcome to learning React!'},
  {id: 2, title: 'Installation', content: 'You can install React from npm.'}
];
ReactDOM.render(
  <Blog posts={posts} />,
  document.getElementById('root')
);

Embedding map() in JSX

JSX allows embedding any expression in curly braces so we could inline the map() result:

function NumberList(props) {
  const numbers = props.numbers;
  return (
    <ul>
      {numbers.map((number) =>
        <ListItem key={number.toString()}
                  value={number} />
      )}
    </ul>
  );
}

Forms

HTML form elements work a bit differently from other DOM elements in React, because form elements naturally keep some internal state.

Controlled Components

In HTML, form elements such as <input>, <textarea>, and <select> typically maintain their own state and update it based on user input. In React, mutable state is typically kept in the state property of components, and only updated with setState().

The textarea Tag

In HTML, a <textarea> element defines its text by its children:

<textarea> Hello there, this is some text in a text area </textarea>

The select Tag

<select>
  <option value="grapefruit">Grapefruit</option>
  <option value="lime">Lime</option>
  <option selected value="coconut">Coconut</option>
  <option value="mango">Mango</option>
</select>

The file input Tag

In HTML, an <input type="file"> lets the user choose one or more files from their device storage to be uploaded to a server or manipulated by JavaScript via the File API.

<input type="file" />

Handling Multiple Inputs

When you need to handle multiple controlled input elements, you can add a name attribute to each element and let the handler function choose what to do based on the value of event.target.name.

Controlled Input Null Value

Specifying the value prop on a controlled component prevents the user from changing the input unless you desire so. If you’ve specified a value but the input is still editable, you may have accidentally set value to undefined or null.

ReactDOM.render(<input value="hi" />, mountNode);

setTimeout(function() {
  ReactDOM.render(<input value={null} />, mountNode);
}, 1000);

Lifting State Up

Often, several components need to reflect the same changing data.

The BoilingVerdict function. It accepts the celsius temperature as a prop, and prints whether it is enough to boil the water:

function BoilingVerdict(props) {
  if (props.celsius >= 100) {
    return <p>The water would boil.</p>;
  }
  return <p>The water would not boil.</p>;
}

Adding a Second Input

We can start by extracting a TemperatureInput component from Calculator. We will add a new scale prop to it that can either be “c” or “f”:

const scaleNames = {
  c: 'Celsius',
  f: 'Fahrenheit'
};

class TemperatureInput extends React.Component {
  constructor(props) {
    super(props);
    this.handleChange = this.handleChange.bind(this);
    this.state = {temperature: ''};
  }

  handleChange(e) {
    this.setState({temperature: e.target.value});
  }

  render() {
    const temperature = this.state.temperature;
    const scale = this.props.scale;
    return (
      <fieldset>
        <legend>Enter temperature in {scaleNames[scale]}:</legend>
        <input value={temperature}
               onChange={this.handleChange} />
      </fieldset>
    );
  }
}

Writing Conversion Functions

function tryConvert(temperature, convert) {
  const input = parseFloat(temperature);
  if (Number.isNaN(input)) {
    return '';
  }
  const output = convert(input);
  const rounded = Math.round(output * 1000) / 1000;
  return rounded.toString();
}

Lifting State Up

In React, sharing state is accomplished by moving it up to the closest common ancestor of the components that need it. This is called “lifting state up”. We will remove the local state from the TemperatureInput and move it into the Calculator instead.

If the Calculator owns the shared state, it becomes the “source of truth” for the current temperature in both inputs. It can instruct them both to have values that are consistent with each other. Since the props of both TemperatureInput components are coming from the same parent Calculator component, the two inputs will always be in sync.

Composition vs Inheritance

React has a powerful composition model, and we recommend using composition instead of inheritance to reuse code between components.

Containment

function FancyBorder(props) {
  return (
    <div className={'FancyBorder FancyBorder-' + props.color}>
      {props.children}
    </div>
  );
}

Specialization

Composition works equally well for components defined as classes:

function Dialog(props) {
  return (
    <FancyBorder color="blue">
      <h1 className="Dialog-title">
        {props.title}
      </h1>
      <p className="Dialog-message">
        {props.message}
      </p>
      {props.children}
    </FancyBorder>
  );
}

class SignUpDialog extends React.Component {
  constructor(props) {
    super(props);
    this.handleChange = this.handleChange.bind(this);
    this.handleSignUp = this.handleSignUp.bind(this);
    this.state = {login: ''};
  }

  render() {
    return (
      <Dialog title="Mars Exploration Program"
              message="How should we refer to you?">
        <input value={this.state.login}
               onChange={this.handleChange} />
        <button onClick={this.handleSignUp}>
          Sign Me Up!
        </button>
      </Dialog>
    );
  }

  handleChange(e) {
    this.setState({login: e.target.value});
  }

  handleSignUp() {
    alert(`Welcome aboard, ${this.state.login}!`);
  }
}

Inheritance

Props and composition give you all the flexibility you need to customize a component’s look and behavior in an explicit and safe way. Remember that components may accept arbitrary props, including primitive values, React elements, or functions.

Thinking in React

Step 1: Break The UI Into A Component Hierarchy

image

You’ll see here that we have five components in our app. We’ve italicized the data each component represents. The numbers in the image correspond to the numbers below.

  1. FilterableProductTable (orange): contains the entirety of the example
  2. SearchBar (blue): receives all user input
  3. ProductTable (green): displays and filters the data collection based on user input
  4. ProductCategoryRow (turquoise): displays a heading for each category
  5. ProductRow (red): displays a row for each product

Step 2: Build A Static Version in React

To build a static version of your app that renders your data model, you’ll want to build components that reuse other components and pass data using props. props are a way of passing data from parent to child. If you’re familiar with the concept of state, don’t use state at all to build this static version. State is reserved only for interactivity, that is, data that changes over time. Since this is a static version of the app, you don’t need it.

Step 3: Identify The Minimal (but complete) Representation Of UI State

To build your app correctly, you first need to think of the minimal set of mutable state that your app needs. The key here is DRY: Don’t Repeat Yourself. Figure out the absolute minimal representation of the state your application needs and compute everything else you need on-demand. For example, if you’re building a TODO list, keep an array of the TODO items around; don’t keep a separate state variable for the count. Instead, when you want to render the TODO count, take the length of the TODO items array.

Step 4: Identify Where Your State Should Live

For each piece of state in your application:

Step 5: Add Inverse Data Flow

Let’s think about what we want to happen. We want to make sure that whenever the user changes the form, we update the state to reflect the user input. Since components should only update their own state, FilterableProductTable will pass callbacks to SearchBar that will fire whenever the state should be updated. We can use the onChange event on the inputs to be notified of it.